Numerical simulation of wavy falling film flow using VOF method
نویسندگان
چکیده
Surface wave dynamics of vertical falling films under monochromatic-frequency flowrate-forcing perturbations is computed by the direct simulation of Navier–Stokes equations using the Volume of Fluid (VOF) method to track free surfaces and the Continuum Surface Force (CSF) model to account for dynamic boundary conditions at free surfaces. The numerical VOF–CSF model is completely formulated, and more attention is given to understanding instabilities of thin films. At low frequency and high flowrate, the small inlet disturbance develops into large solitary waves preceded by small capillary bow waves. The circulation flow compatible with the solitary wave size is observed in the solitary peak. On the other hand, at high frequency and low Re, small-amplitude waves in nearly sinusoidal shape without forerunning capillary waves are formed on the surface. The quasi-periodic waveforms are found to occur at the nearly sinusoidal wave regime. The slight increase in wave-amplitude and wavelength, and decrease in residual thickness as waves evolves downstream are observed for both solitary waves and sinusoidal types. The variation of velocity and pressure along a wave are strong at the wave trough and capillary wave region, due to the large surface curvature there. The pressure variation perpendicular to the wall is negligible and only a small variation is observed at the solitary wave trough and capillary region. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Viscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers
In this paper, symmetric water entry of twin wedges is investigated for deadrise angle of 30 degree. Three numerical simulation of a symmetric impact, considering rigid body dynamic equations of motion in two-phase flow is presented. The two-phase flow around the wedges is solved by Finite Element based on Finite Volume method (FEM-FVM) which is used in conjunction with Volume of Fluid (VOF) sc...
متن کاملNumerical Simulation of Partial Cavitation over Axisymmetric Bodies: VOF Method vs. Potential Flow Theory
A computational study of partial cavitation over axisymmetric bodies is presented using two numerical methods. The first method is based on the VOF technique where transient 2D Navier-Stokes equations are solved along with an equation to track the cavity interface. Next, the steady boundary element method (BEM) based on potential flow theory is presented. The results of the two methods for a di...
متن کاملEvaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation
In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...
متن کاملIncremental identification of transport phenomena in wavy films
The complexity of wavy film flows results in a high computational cost for a direct numerical simulation. Simplified models are therefore attractive alternatives for engineering design calculations. An incremental approach for the identification of transport models in wavy film flows is presented here. The proposed strategy decomposes the identification problem into a series of sequential, comp...
متن کاملSimulation of gas-liquid two phase flow in upriser pipe of gas-lift systems
Gas-lift pumps are devices for lifting liquid phase incorporating the gas phase to be injected in the bottom of liquid column. They are widely used in various industrial applications such as oil extracting in petroleum industries. Gas-liquid flow being the main part of the flow through these systems, flowing in vertical pipes of gas-lift pumps has different regimes namely bubbly, slug, chur...
متن کامل